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Introduction
The Goal:

We want to know the effect of nuclear-data uncertainties on the results of
our physics simulations.

We start from the uncertainties and correlations (covariances) provided by
ENDF/B-VIIIrc1.
We then fit to Jezebel.
Details:

239Pu neutron cross sections, prompt fission neutron spectrum (χ-vector),
and ν̄.
Reduced to 30 energy groups, numbered from low to high energy, using
NJOY.
Cross sections for 6 reactions plus total cross section for each group

The order is: total, elastic, inelastic, n2n, n3n, fission, capture
(mt1, mt2, mt4, mt16, mt17, mt18, mt102).

Thus, 270 nuclear data overall
All data are in single precision.
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Constraints
All sampled values must be non-negative (an inequality constraint)

Normally imposed either by discarding samples with negative values or
doing lognormal sampling

Sampled values must satisfy certain equality constraints.
For each energy group, the total cross section must be the sum of the cross
sections of the individual reactions.
The sum of the values of the PFNS must be 1.
These equality constraints are linear and so may be imposed with proper
specification of correlations.
However, as we will show, imposing equality constraints with correlations
conflicts with lognormal sampling.

Covariance matrices must be non-negative definite (all eigenvalues ≥ 0).
The covariance matrices that obey linear constraints are singular, thus have
zero eigenvalues.
Due to finite precision arithmetic, some of these zero eigenvalues will
appear to be negative but (hopefully) small.
How small is small enough?
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A Correlation Matrix with Constraints
This is the correlation
matrix for the PFNS.
The lowest five energy
groups have zero variance.
The large block of ones
(red) locks the mid-range
values together.
The ones and near-ones
close to the diagonal
throughout maintain
smoothness.
The minus-one values
(blue) impose the
summation constraint by
anticorrelating the high
values with the mid-range.
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Numerics

The data are specified in single precision.
The logarithmic range in the mean vectors and variances for both cross
sections and PFNS is very large.

Up to 1012

The sensitivities of outputs of interest to input values obviously differ
enormously.

Especially between cross sections for different reactions but also across
energies
For example, fission versus n2n
Just because a quantity is small relative to others does not mean that it is not
important.

Sampling from the specified means and covariances requires spectral
factorization of the covariance matrix, which operates globally over the
entire matrix, so care must be taken that the large values do not wash out
the (potentially important) small ones.
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Fixing the Grouped Data to Satisfy The Constraints

The grouped nuclear data, especially the covariance matrices, do not obey
the constraints very well.

Never better than single precision (107), sometimes much worse.
The logarithmic range is much larger than this, up to 1012 with the current
dataset.

We should fix the covariance matrices (and possibly the mean vectors) to
obey the constraints down to double precision.
We need to impose constraints on a covariance matrix, Σ, in a particular
order so that imposing one constraint is not undone by later fixes.

1. Remove zero rows and columns
2. Impose the equality constraints
3. Perform the spectral factorization, UΛUT = Σ, where U is the matrix of

eigenvectors and Λ is the diagonal matrix of eigenvalues.
4. Set all negative eigenvalues to zero
5. Invert the spectral factorization
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Imposing Linear Constraints on a Covariance Matrix

The requirement:
A sample, s, must obey a set of linear constraints of the form s · Ci = ki

where Ci is the vector that defines the i-th constraint and ki is an associated
constant.

Consequences:
The mean vector must satisfy the same constraints.
The covariance matrix must satisfy a set of constraints of the form ΣC = 0
where C is the matrix of the column vectors Ci.

We impose the constraints by using projection operators. This is intended
to minimize changes to the matrix and appears to do so. It is appropriate
when the matrix is not too far from obeying the constraints. In worse
cases, it may not be appropriate.
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Imposing Constraints Using Projection Operators
Scale Σ so that all variances are 1 by dividing each row and column by the square
root of its diagonal element (the standard deviation).

Yes, this is the correlation matrix, but that is not what we are using it for.
Doing this eliminates problems of large logarithmic range and reduces problems of
very different sensitivities.

Scale the columns of C by dividing each component by its standard deviation.
Orthonormalize the columns of C (using the QR decomposition),

Ĉ = Q, Q,R = QR(C). (1)

Compute PC⊥ , the operator that projects orthogonally onto the space that is
orthogonal to the columns of C (and Ĉ),

PC⊥ = I− ĈĈT . (2)
Compute Σ′, which obeys the constraints,

Σ′ = PC⊥Σ PC⊥ . (3)
Undo the scaling of Σ′ by multiplying each row and column by its standard
deviation.
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What About Negative Values?

About 7% of cross-section samples have at least one negative value.
We choose to discard these samples.
We found that about 6% of PFNS samples have at least one negative value.
Because discarding 13% of samples seemed excessive, we elected to
implement (multivariate) lognormal sampling for the PFNS.

The PFNS has only a single constraint versus 30 for the cross sections.
It turns out that you cannot do multivariate lognormal sampling for a
quantity with hard correlations (1 or -1 or values close to those).

“Transformation of correlation coefficients between normal and lognormal
distribution and implications for nuclear applications”; Gašper Žerovnik,
Andrej Trkov, Donald L. Smith, Roberto Capote; Nuclear Instruments and
Methods in Physics Research A 727 (2013) 33–39
“Random Sampling of Correlated Parameters—a Consistent Solution for
Unfavourable Conditions”; G. Žerovnik. A. Trkov. I. A. Kodeli, R.Capote,
D. L. Smith; Nuclear Data Sheets 123 (2015) 185–190

We have implemented a work-around that works well for our application.
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Multivariate Lognormal Sampling

A multivariate random variable Y has a lognormal distribution iff:

Y ≡ exp(X), X ∼ N(µ,Σ). (4)

where exp just means component-wise exponentiation.
The mean and covariance matrix of Y are given by:

E[Y]i = exp
[
µi +

1
2

Σii

]
(5)

Cov[Y]ij = exp
[
µi + µj +

1
2

(Σii + Σjj)

] (
exp(Σij) − 1

)
. (6)

We are given E[Y] and Cov[Y] so we want to invert Equations 5 and 6 to
obtain µ and Σ.
Even though these are transcendental equations, they can actually be
inverted analytically.
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Multivariate Lognormal Sampling (continued)

µi = log
(
E[Y]i

)
− 1

2
log
(

Cov[Y]ii

E[Y]2i
+ 1
)

(7)

Σij = log
(

Cov[Y]ij
E[Y]i E[Y]j

+ 1
)
. (8)

µi depends only on E[Y]i and Cov[Y]ii.
Σii depends only on E[Y]i and Cov[Y]ii.
µi and Σii are exactly the same as if each component were just an
independent lognormal random variable.
Σij depends only on E[Y]i, E[Y]j, and Cov[Y]ij.
There is no guarantee that Σ as defined by Equation 8 will be a valid
covariance matrix and it is easy to come up with cases where it will not be.

For example, a correlation of -1 and sufficiently large relative standard
deviations for the two components will do it.
So will a correlation of 1 under certain circumstances.
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Multivariate Lognormal Sampling with Hard
Correlations
1. Fix the covariance matrix, Cov[Y], and mean vector, E[Y], as appropriate.
2. Remove zero rows and columns from the covariance matrix and corresponding

components from the mean vector.
3. Compute µ and the diagonal elements of Σ from Equations 7 and 8.
4. Compute the correlation matrix, Corr[Y], from Cov[Y].
5. Apply the vector of standard deviations,

√
Σii, to Corr[Y] to obtain the off-diagonal

elements of Σ.
6. Sample from the multivariate normal distribution defined by µ and Σ.
7. Exponentiate the samples.
8. Restore components in the samples that were deleted because of zero variance.
9. Impose the constraints on each sample.

Up until the last step, the means and standard deviations of the samples are the same
as originally specified. Only the covariances are different.
This works well for our case (means and standard deviations of the samples are
almost unchanged and covariances are close) but there is no guarantee that this will
be true in other cases.
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Sampling and Fitting to Jezebel
Sample from cross sections, ν̄, and the PFNS independently and composite
the samples.
Discard any composite samples that have negative cross sections.
Produce Nuclear Data Interface (NDI) tables for the surviving samples.
Use the NDI tables as the 239Pu data for simulations of Jezebel, computing
k-effective.
Do sensitivity analysis to understand which inputs play a significant role in
k-effective.

We used a regularized version of sliced inverse regression (SIR) with
hold-some-back cross validation to identify the dominant modes in the
nuclear data.

Weight each sample by the likelihood of its value of k-effective.
The weighted samples are a representation of the posterior distribution for the
nuclear data, after taking the Jezebel results into account.

Analyze the posterior by, for example, computing the weighted sample
mean vector and covariance matrix.
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Sensitivities I

Each color shows the mean, divided by the corresponding standard deviation, of the
samples in a particular quantile of the k-effective space.

For example, the deep green shows the mean of the samples that produce the lowest 5%
of the k-effective values.

The plot makes it possible to see which nuclear data play a significant role in
determining k-effective, and how they trade off against each other.

Fission obviously plays the biggest role.
The lowest quantile corresponds to low values for the fission cross section, ν̄, and
inelastic scattering, high values for elastic scattering and capture, and a softening of the
PFNS (decreased values at high energies and increased values at low energies), as
expected.
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Sensitivities II

There is a single mode of variation for the nuclear data that completely
dominates k-effective.

The response to this model of variation is linear.

For any set of nuclear data, the dot product with this mode is what
determines k-effective.

This is still true after we do the fit to Jezebel.
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Sampling and Fitting: Means

Black shows changes in the means due to sampling error and tossing out
negative cross sections.

The changes occur where we expect them to, in the data that have large
relative standard deviations.
The biggest changes, for high-energy capture and n3n, are under 4%. The
others are much smaller.

Red shows changes in the means due to fitting to Jezebel.
The only effect of fitting on the means is on the inelastic scattering, which
increases modestly.
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Sampling and Fitting: Standard Deviations

Black shows changes in the standard deviations due to sampling error and
tossing out negative cross sections.

The changes are quite small except for high energy capture, which decreases
by about 8%.

Red shows changes in the standard deviations due to fitting to Jezebel.
The effects are substantial. Fission decreases by almost 35%. Elastic and
inelastic scattering decrease by up to 10% and total scattering decreases by
about 5%.
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Prior Correlations
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Posterior Correlations
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Changes in Correlations
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The Effects of Fitting on Correlations

Reduced positive correlations among the fission values, allowing them to
trade off against each other.

Negative correlations between fission and ν̄.

Negative correlations between fission and hardening of the PFNS.
Other effects are more complex:

Negative correlations between fission and inelastic scattering.
Positive correlation between fission and elastic scattering.

In general, the fitted correlations give us a quantitative picture of
compensating errors.
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